Biochemical, haematological and bodyweight changes in horses competing in the 160km Sultan's Cup
Terengganu Endurance Challenge November 25 ${ }^{\text {th }} 2006$

Dr Balakrishna Polanaidoo, Malaysia Dr David Marlin, UK

Introduction

- Endurance continues to be a rapidly growing and highly competitive sport on a global basis
- Average race speeds for championship rides have increased significantly over the last 20 years
- At the same time completion rates have fallen
- Endurance rides are now being held in a greater variety of climates - e.g. desert, semi-tropical
- There is limited information on the effects of heat or heat and humidity combined with speed on the health and welfare of endurance horses

Aim

- To collect simple weight and blood data on horses competing in the 2006 160km Sultan's Cup Terengganu Endurance Challenge in order to investigate the effects of high heat and humidity on endurance horses in competition

Methods and Materials (1)

- All horses taking part in the 160km class ($n=23$) were recruited to take part in the study
- Pre-ride blood samples collected $\sim 5 h$ before start
- 3 ml , purple top; 10 ml red top; 3 ml Grey top (Sodium \& Potassium Oxalate for Glucose)
- Pre-ride weight was measured on a weighbridge $\sim 4 h$ before the start of the ride
- Indicator - Ruddway 300 \& Load Cell Bars MP 600

Methods and Materials (2)

- Post-ride blood samples were collected only from horses that completed the ride and within 60 minutes of finishing
- Weight was measured at each vet gate

Methods and Materials (3)

- Blood samples were placed in tubes containing EDTA for haematology and plain tubes to harvest serum for biochemistry or grey top Sodium \& Potassium Oxalate (for Glucose)
- Analysis was performed within 2 hours of collection on Humacount \& Spot Chem analysers

Results

Environmental conditions

Data courtesy of Mr John Robertson, UK

Results

Completions/Eliminations

- 13/23 horses completed
- Average speed of the $1^{\text {st }}$ placed horses was $12.7 \mathrm{~km} / \mathrm{h}$
- Average speed of finishers was $11.1 \mathrm{~km} / \mathrm{h}$
- 10/23 eliminated
- Lameness = 5
- Metabolic = 4
- By rider = 1

Results

Weight loss (kg) per loop

Results

Weight loss (\% bodyweight) per loop

Results

Cumulative weight loss (\% bodyweight)

Results

Haematology - WBCC

Results

Haematology - Lymphocytes

Results

Haematology - PCV

Results

Biochemistry - Total Protein

Results

Biochemistry - Glucose

Results

Biochemistry - AST

Results

Biochemistry - Sodium and Chloride

Discussion (1)

Weight loss

- Average bodyweight loss of $\sim 5 \%$
- Winning speed 12.7 km/h
- Average speed 11.1 km/h
- Estimated mean WBGT index $27^{\circ} \mathrm{C}$
- Average loss of 6.4% reported by Schott et al. (2006) for finishers in an FEI*** 160km ride in UK
- Winning speed 17.8 km/h
- Average speed 15.2 km/h
- Mean WBGT index $18^{\circ} \mathrm{C}$

Discussion (2)

Haematology and Biochemistry

- In general, changes less extreme or similar to those previously reported for faster rides in cooler climates

Conclusions

- A 160 km ride in a climate with a high WBGT index and with a slower ride speed produced changes in bodyweight and blood haematology/biochemistry less extreme or similar to those for faster rides in cooler climates

